Math 270: Differential Equations Day 12 Part 1

<u>Section 4.5</u>: The Superposition Principle and The Method of Undetermined Coefficients Revisited Part 2

Recall: The Method of Undetermined Coefficients

Method of Undetermined Coefficients

To find a particular solution to the differential equation

 $ay'' + by' + cy = Ct^m e^{rt},$

where m is a nonnegative integer, use the form

(14)
$$y_p(t) = t^s (A_m t^m + \cdots + A_1 t + A_0) e^{rt}$$

with

(i) s = 0 if *r* is not a root of the associated auxiliary equation; (ii) s = 1 if *r* is a simple root of the associated auxiliary equation; and (iii) s = 2 if *r* is a double root of the associated auxiliary equation.

Recall: The Method of Undetermined Coefficients

Method of Undetermined Coefficients

To find a particular solution to the differential equation

$$ay'' + by' + cy = \begin{cases} Ct^m e^{\alpha t} \cos \beta t \\ \text{or} \\ Ct^m e^{\alpha t} \sin \beta t \end{cases}$$

for $\beta \neq 0$, use the form

(15)
$$y_p(t) = t^s (A_m t^m + \dots + A_1 t + A_0) e^{\alpha t} \cos \beta t$$
$$+ t^s (B_m t^m + \dots + B_1 t + B_0) e^{\alpha t} \sin \beta t ,$$
with

(iv) s = 0 if $\alpha + i\beta$ is not a root of the associated auxiliary equation; and (v) s = 1 if $\alpha + i\beta$ is a root of the associated auxiliary equation.

Recall: The Superposition Principle

Superposition Principle

Theorem 3. If y_1 is a solution to the differential equation

 $ay'' + by' + cy = f_1(t) ,$

and y_2 is a solution to

 $ay'' + by' + cy = f_2(t) ,$

then for any constants k_1 and k_2 , the function $k_1y_1 + k_2y_2$ is a solution to the differential equation

 $ay'' + by' + cy = k_1 f_1(t) + k_2 f_2(t)$.

Method of Undetermined Coefficients (Revisited)

To find a particular solution to the differential equation

 $ay'' + by' + cy = P_m(t)e^{rt},$

where $P_m(t)$ is a polynomial of degree *m*, use the form

(13)
$$y_p(t) = t^s (A_m t^m + \cdots + A_1 t + A_0) e^{rt};$$

if r is not a root of the associated auxiliary equation, take s = 0; if r is a simple root of the associated auxiliary equation, take s = 1; and if r is a double root of the associated auxiliary equation, take s = 2.

Method of Undetermined Coefficients (Revisited)

To find a particular solution to the differential equation

 $ay'' + by' + cy = P_m(t)e^{\alpha t}\cos\beta t + Q_n(t)e^{\alpha t}\sin\beta t$, $\beta \neq 0$,

where $P_m(t)$ is a polynomial of degree *m* and $Q_n(t)$ is a polynomial of degree *n*, use the form

(14)
$$y_p(t) = t^s (A_k t^k + \dots + A_1 t + A_0) e^{\alpha t} \cos \beta t$$

 $+ t^s (B_k t^k + \dots + B_1 t + B_0) e^{\alpha t} \sin \beta t$,

where k is the larger of m and n. If $\alpha + i\beta$ is not a root of the associated auxiliary equation, take s = 0; if $\alpha + i\beta$ is a root of the associated auxiliary equation, take s = 1.

<u>Ex 4.5</u>: Write down the form of a particular solution to $y'' - 5y' + 6y = (8t^3 + 3t - 5)e^{2t}$

Example 5 Write down the form of a particular solution to the equation

 $y'' + 2y' + 2y = 5e^{-t}\sin t + 5t^3e^{-t}\cos t.$

Example 6 Write down the form of a particular solution to the equation

$$y''' + 2y'' + y' = 5e^{-t}\sin t + 3 + 7te^{-t}.$$